

SRI SATHYA SAI INSTITUTE OF HIGHER LEARNING

(Deemed to be University)

Syllabus for M.Sc. (Data Science and Computing)

(Effective from the batch 2022-23 onwards)

Prasanthi Nilayam - 515 134 Sri Sathya Sai District, Andhra Pradesh, Ph.: 08555 287239; Fax: 286919 Website: <u>www.sssihl.edu.in</u> ; Email: <u>registrar@sssihl.edu.in</u>

SRI SATHYA SAI INSTITUTE OF HIGHER LEARNING (Deemed to be University) Syllabus for Two Year M.Sc. in Data Science and Computing

(Effective from the batch 2022 onwards)

M.Sc. (Data Science and Computing)

INTRODUCTION

Data Science has grown to be a domain of scientific study due to the deluge of data generated and acquired through various means. Data driven scientific discovery has contributed a lot to scientific investigation. Important contributions of data acquisition, visualization and analytics with tools from Machine Learning is seen in domains like Business Intelligence, Financial services, Climate Modeling, Weather forecasting, Medical, Chemo, Bio, Onco informatics etc., and the list goes on.

This programme is designed specifically for graduates in Computer Science and Computer Applications. Having Degrees like B.Sc.(Computer Science), BCA and B.Tech./B.E. in Computer Science.

In order to equip the students to continue with higher studies in academic disciplines for Ph.D., the candidates undergoing the course should also be comfortable to take the National Level qualifying examinations like UGC NET, GATE etc.

Programme Specific Objectives:

The proposed syllabus aims to achieve the following objectives:

- 1. To produce good human beings who are skilled in learning from data with fair and ethical means to produce meaningful applications for societal harmony and goodness.
 - a. Through courses like Awareness and Moral Classes to impart righteous living
 - b. Through Integral Education to live with everyone and care for society
- 2. To produce manpower trained to understand the science in learning from data and the needed computing skills to develop practical solutions.
 - a. Through foundational courses in mathematics, statistics and computer science like Applied Linear Algebra, Optimization Techniques, Inferential Statistics, Computer Organization & Design and Design and Analysis of Algorithms.
 - b. Through core courses in Data Science like Machine Learning, Deep Learning, Artificial Intelligence and Natural Language Processing.

- c. Through software labs like Data Engineering and lab components for various courses.
- d. Through implementation of a data science and computing software project.
- e. Through specialized elective courses like Machine Learning Operations, Reinforcement Learning etc.
- 3. To train young minds to be industry ready. This is achieved by offering courses like Software Lab in Data Engineering, Reinforcement Learning, Machine Learning Operations etc.
- 4. To develop programming and problem solving skills. This is achieved by offering Lab components for different subjects.

Programme Specific Outcomes:

Upon the completion of the programme, a student must be

- Grounded in the roots of morality and ethics, ready to serve society
- Balanced in theoretical knowledge and practical skill of data science and computing to draw insights from data
- Able to take up research or a higher academic degree in Data Science or Computer Science
- Able to do the industry role of Data Analyst or Data Engineer or Data Scientist
- Able to develop AI solutions for selected real world problems from data
- Able to appreciate the core values and philosophy of Sri Sathya Sai Institute of Higher Learning.
- Able to imbibe Core values in life and lead the life as propounded by Bhagawan Sri Sathya Sai Baba.

The course structure and syllabus provides foundational, core, advanced and working knowledge in Mathematics, Statistics and Computer Science.

All the subjects are to be awarded 4 credits except Software Lab for Data Visualization.

For some of the subjects the credits are split between Theory and Practical based on the necessity. For 1 credit of practical 2 periods are allocated.

A few subjects are purely practical as they are intended to improve programming skill of the students in a specific language or platform. Eight periods are allotted for a four credits practical course.

In order to facilitate development of skill in problem solving and to provide exposure to applications of the concepts learnt in a given Theory subject a facility for

Tutorial/Practical is also provided within the curriculum. One or two periods per week is provided for Tutorial/Practical for every subject based on the requirement.

In order to cater to specialization, elective courses are provided in the areas of Reinforcement Learning, Machine Learning Operations (MLOps), Information Retrieval, Combinatorial Graph Theory, Robotics, Topological Data Analysis (TDA) etc. All electives are of 4 credits. Based on necessity the credits may be split between Theory and Practical.

* * *

DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE SCHEME OF INSTRUCTION AND EVALUATION

M.Sc. (Data Science and Computing)

Paper Code	Title of the Paper	Credits	Hours		odes of aluation	Types of Papers	Maximum Marks		
Semester I									
MDSC-101	Applied Linear Algebra	÷	3	3	IE2	Т	100		
MDSC-101(P)	Practicals: Applied Linear Algebra		1	2	Ι	Р	50		
MDSC -102	Inferential Statistics		3	3	IE2	Т	100		
MDSC-102(P)	Practicals: Inferential Statistics		1	2	Ι	Р	50		
MDSC -103	Optimization Techniques		3	3	IE2	Т	100		
MDSC-103(P)	Practicals: Optimization Techniques		1	2	Ι	Р	50		
MDSC -104	Computer Organization and Architecture	4	1	4	IE2	Т	100		
MDSC -105	Design and Analysis of Algorithms	4	4	4	IE2	Т	100		
MDSC-106	Software Lab for Data Visualization	2	2	4	Ι	Р	50		
PAWR-100	Awareness Course – I: Education for Life		1	2	Ι	Т	50		

(Effective from 2022-23 batch and onwards)

	23	29		750
	Credits	Hours		Marks
	Cicuits	inouis	i i i	Marks

Semester II						
MDSC-201	Regression Methods	3	3	IE2	Т	100
MDSC-201(P)	Practicals: Regression Methods	1	2	Ι	Р	50
MDSC-202	Multivariate Statistical Analysis	3	3	IE2	Т	100
MDSC-202(P)	Practicals: Multivariate Statistical Analysis	1	2	Ι	Р	50
MDSC-203	Machine Learning	3	3	IE2	Т	100
MDSC-203(P)	Practicals: Machine Learning	1	2	Ι	Р	50
MDSC-204	Big Data Analytics	4	4	IE2	Т	100
MDSC-205	Software Lab in Data Engineering	4	8	Ι	Р	100
MDSC-206	Mini Project	2	4	Ι	PW	50***
PAWR-200	Awareness Course – II: God, Society and Man	1	2	Ι	Т	50
		23 Credits	33 Hours			7 50 Marks

Semester III						
MDSC-301	Stochastic Processes	3	3	IE2	Т	100
MDSC-301(P)	Practicals: Stochastic Processes	1	2	Ι	Р	50
MDSC -302	Deep Learning	3	3	IE2	Т	100
MDSC -302 (P)	Practicals: Deep Learning	1	2	Ι	Р	50
MDSC-303	Natural Language Processing	3	3	IE2	Т	100
MDSC-303(P)	Practicals: Natural Language Processing	1	2	Ι	Р	50
MDSC-304	Cloud Computing	3	3	IE2	Т	100
MDSC-304(P)	Practicals: Cloud Computing	1	2	Ι	Р	50
MDSC-403	Project Interim Review*	_	10	Ι	PW	50*
PAWR-300	Awareness Course –III: Guidelines for Morality	1	2	I	Т	50
		17 Credits	32 Hours			700* Marks

Semester IV						
MDSC -401	Elective - I	4	4**	IE2	Т	100**
MDSC-402	Elective - II	4	4**	IE2	Т	100**
MDSC-403	Project*	10	22	E2	PW	150*
PAWR-400	Awareness Course –IV: Wisdom for Life	1	2	Ι	Т	50
		19 Credits	32** Hours			400** Marks

GRAND TOTAL	82 Credits	123**		2600 ** Morka
	Credits	Hours	1	Marks

Notes:

- 1. (*) Project work MDSC-403 will commence in 3rd semester and continue to 4th semester with the allocation of 50 Marks in third semester and 150 marks in the fourth semester towards the project work.
- 2. (*) For students undertaking projects (MDSC-403), the evaluation will be based on three components, viz.
 - a. A preliminary review of an interim report in respect of the project work at the end of 3rd semester will be conducted for 50 marks and the marks allocated will be carried forward to 4th semester MDSC-403 for overall grading.
 - b. A project Viva voce by a committee constituted by the Head of the Department as per regulations will be conducted for 50 marks in the 4th semester.
 - c. An E2 type evaluation of the project report at the end of 4^{th} semester will be for 100 marks.
- 3. (*)Total marks for the project will be 200 marks against total credits of 10 accounted for in 4th semester.
- 4. A number of electives have been identified and listed. These courses are identified with a special code. All these subjects are also allocated 4 credits each.
- 5. (**) Elective courses may have the credits split between Theory and Practical based on the chosen treatment of the subject and its requirement. Accordingly, the number of periods allocated for the subject (Theory + Practical) will vary. That will influence the total number of hours allocated for the subject and the total marks for the semester too.
- 6. The choice of electives being offered in each semester is at the discretion of the Head of the Department.
- 7. (***) The Mini-Project (MDSC-206) will be undertaken during the second semester by the candidate. This could be based on an internship (taken online/on-campus) with an industry or a field work etc., with a mentoring faculty from the department. Students will be asked to make a presentation along with a submission of the report of the work done towards the end of the second semester i.e., within one week before the last working day of the semester. This will be evaluated internally by a panel of minimum two faculty of the department constituted by HoD/Associate HoD. Total marks for the mini-project would be for 50 marks which will be equally distributed between the presentation and the report submitted.

Indicator	Legend		Indicator	Legend
IE1	CIE and ESE ; ESE single evaluation		Т	Theory
IE2	CIE and ESE ; ESE double evaluation		Р	Practical
I	Continuous Internal Evaluation (CIE) only		v	Viva voce
	Note: 'I' does not connote 'Internal Examiner'	PW	Project Work	
Е	End Semester Examination (ESE) only Note: 'E' does not connote 'External Examiner'		D	Dissertation
E1	ESE single evaluation			
E2	ESE double evaluation			
Co (ES	ntinuous Internal Evaluation (CIE) & End Semester Exar E)	minatio		

PS: Please refer to guidelines for 'Modes of Evaluation for various types of papers', and 'Viva voce nomenclature & scope and constitution of the Viva voce Boards'.

List of Electives:

- 1. MDSC-AI: Artificial Intelligence [4 Credits]
- 2. MDSC-CGT: Combinatorics and Graph Theory [4 credits]
- MDSC-RL: Reinforcement Learning [3 credits]
 MDSC-RL(P): Practicals: Reinforcement Learning [1 credit]
- MDSC-MLO: Machine Learning Operations [3 Credits]
 MDSC-MLO(P): Practicals: Machine Learning Operations [1 credit]
- 5. MDSC ATS: Applied Time Series Analysis [4 credits]
- 6. MDSC IR: Information Retrieval [4 credits]
- 7. MDSC NS: Network Security [4 credits]
- MDSC –IoT: Internet of Things [3 credits]
 MDSC IoT (P): Practicals: Internet of Things Lab [1credit]
- 9. MDSC TDA: Topological Data Analysis [4 credits]
- 10. MDSC LSP: Linux System Programming [4 credits]
- 11. MDSC-DS: Distributed Systems [4 Credits]

Semester I

	[MDSC-101] - Applied Linear Algebra 3 Cr	edits				
	Course Objective: The course focuses on iterative techniques for solving large systems of equations which typically stem from the discretization of part equations. In addition, computation of eigenvalues, least square problems and will be discussed.	tial differential				
	 Course Outcome : Develop the skill set to explain and fluently apply fundamental linear algebraic concepts such as matrix norms, eigen- and singular values and vectors; estimate stability of the solutions to linear algebraic equations and eigenvalue problems; recognize matrices of important special classes, such as normal, unitary, Hermitian, positive definite and select efficient computational algorithms based on this classification; 					
Unit	Торіс	No. of Periods				
1	Review of Vectors and Matrices : Vector Addition, Linear Combination, Inner Product, Orthogonality, Norm, Cauchy-Schwarz inequality, Matrix addition & multiplication, Column space, Linear Independence, Rank of a Matrix, Gaussian Elimination, Determinant, Inverse, Adjoint, Cofactor, Null space, Rank-Nullity theorem	5				
2	Applications of Matrices : Electric Circuits, Traffic flow, Graph theory, Social Networks, Dominance directed graph, Influential node	5				
3	Applications of Linear Transformations : Linear Transformations, Gaussian Random Variable, Linear Transformation on Gaussian Random Vectors, Gaussian classification in Machine Learning	5				
4	Applications of Eigenvalues and Eigenvectors : Introduction to Eigenvalues & Eigenvectors, Eigenvalue decomposition, Positive semi-definite matrices, Principal Component Analysis, Eigenfaces	8				
5	Applications of Least Squares Solution : Orthogonality, Gram-Schmidt orthogonalization, Least Squares solution, Projection matrix, Least Norm solution, Pseudo-inverse, Rank Deficient Matrices, Linear Regression, Polynomial Fitting	8				
6	Applications of Linear Minimum Mean Square Error (LMMSE) : Introduction to LMMSE, LMMSE estimate & Covariance Matrix, LMMSE estimation in Linear Systems, Auto Regression, Recommender System	8				

Key Text

Gilbert Strang, Linear Algebra and its applications, 4th Edition, Thomson Brooks/Cole, 2005.

REFERENCES

- 1. Stephen Boyd & Lieven Vandenberghe, Introduction to Applied Linear Algebra -Vectors, Matrices and Least Squares, Cambridge University Press, 2018
- 2. Philip N. Klein, Coding the Matrix Linear Algebra through Applications to Computer Science, Newtonian Press, 2013

	Course Objective: To apply algorithms used in Applied Linear Algorithms programming language like python	gebra using a
	 Course Outcome: 1. Ability to understand and develop linear algebra related functions 2. To analyze and discover characteristics of a dataset 	
Unit	Торіс	No. of Periods
1	 The following programs are to be implemented in basic python Dot Product of Vectors, Matrix Multiplication with basic python Determinant of a Matrix, Matrix Inverse with basic python Rank of a Matrix with basic python Gaussian Elimination with basic python 	10
2	 The following are to be implemented using numpy Eigenvalues, Eigenvectors, SVD Eigenfaces Linear Regression Matrix Exponential 	16

Key Text: Leo Chin, Tanmay Dutta, NumPy Essentials, Packt Publishing, 2016

REFERENCES

Umit Mert Cakmak, Mert Cuhadaroglu, Mastering numerical computing with Numpy, Packt Publishing, 2018

[MDSC-102] – Inferential Statistics 3 Credi	ts			
	 Course Objectives: To enable students To understand and make inferences based on relations found in a sample of the given population To understand and appreciate individual statistical test and it's nuances of working Acquire an understanding of the concepts of sampling distribution, statistical reliability and hypothesis testing, as well as the principles and procedures of the various tests of significance 					
	 Course Outcome : Develop the skill set to 1. Write a computer program to carry out data analyses 2. Interpret the output of statistical analysis 3. Set up and perform hypothesis tests, interpret p-values, and report the results of the analysis in a way that is interpretable for the public 					
Unit	Торіс	Details	No. of Periods			
1	Elements of Random Variables	Random Variables: Univariate, Bivariate random variables; Expectation, Variance of a random variable; Conditional Expectation, Covariance and Correlation; Moment Generating Functions, independence of random variables and the reproductive property of certain distributions; Special distributions: Binomial, exponential, Gamma and Normal distributions; Transformation of random variable: $aX + b,X^2$, e^{tX} , and $log X$; Convergence of Random variables: Convergence in distribution or in probability, Weak Law of Large Numbers and Central Limit Theorem	11			
2	Estimation	An overview of statistical inference, Methods of point estimation: Maximum Likelihood Estimation, Method of Moments; Uniformly Minimum Variance Unbiased Estimators (UMVUE), Cramer-Rao Inequality and Decision-Theoretic Approach to Estimation; Confidence Intervals and Confidence Regions	14			

3	Testing Hypotheses	Formulation of Testing Hypotheses, Neyman-Pearson Fundamental Lemma, Exponential Type Families, Uniformly Most Powerful Tests for Some Composite Hypotheses and applications; Likelihood Ratio Tests and its applications: Contingency Tables and Goodness-of-Fit Test; Decision-Theoretic Approach to Testing Hypotheses and relationship between Testing Hypotheses and Confidence Regions.	14
---	-----------------------	--	----

Total: 39 Periods

Key Text(s):

George G. Roussas, An Introduction to Probability and Statistical Inference, Second Edition, Academic Press, 2015

Chapters: 3.1, 3.3, 4.1-4.3, 5, 6.1, 7-12.

References:

- 1. Paul G. Hoel, Sidney C. Port, Charles J. Stone, Introduction to Statistical Theory, Houghton Mifflin Company, BOSTON, 1971
- 2. G.Casella, R.L.Berger, Statistical Inference, Second Edition, Duxbury Advanced Series, 2001
- Vijay K. Rohatgi, A. K. Md. Ehsanes Saleh, An Introduction to Probability and Statistics, Second Edition, A Wiley-Interscience Publication, John Wiley & Sons, Inc - 2001

[MDSC-102(P)] - Practicals: Inferential Statistics 1 (
	Course Objective : To train the students on implementing different statistical tests in python.						
	 Visualize the st suggest difference 	evelop the skill set to tatistical techniques to explore data nt statistical tests on a given real world data er program to carry out data analyses					
Unit	Торіс	Details	No. of Periods				
1	Review of Python Libraries	Loading and reading of datasets; Fundamentals in NumPy, Pandas and Matplotlib	6				

2	Descriptive Statistics	Mean, median, mode, variance and correlation matrix; Basic plots: Dot plot, Box-plot, Histograms, and Scatter plots; Distributions: Binomial, Gamma, Normal; Simulation of Central Limit Theorem	6	
3.	Statistical Tests	Normality Tests: Shapiro-Wilk Test, D'Agostino's; K^2 – Test and Anderson-Darling Test; Statistical Hypothesis Tests: Student's t-test, Paired Student's t-test, Chi-square test and F-test and Analysis of Variance Test (ANOVA)	6	
4	Data Analysis	Different cases studies can be done using Datasets;	8	
	Total: 26 Periods			

Key Texts:

- 1. Phuong Vo.T.H , Martin Czygan, Ashish Kumar, and Kirthi Raman, Python: Data Analytics and Visualization, Published by Packt Publishing Ltd 2017
- 2. NumPy User Guide, Retrieved July 7, 2022 from https://numpy.org/doc/stable/numpy-user.pd
- 3. Pandas User Guide, Retrieved July 7, 2022 from https://pandas.pydata.org/docs/pandas.pdf

[MDSC-103] – Optimization Techniques 3 Credits
 Course Objective: To model and discuss the documented real-world applications. Study of mathematical programming algorithms. Apply the mathematical results and numerical techniques of optimization theory to concrete optimization problems
 Course Outcome: Develop the skill set to 1. Translate a real world problem statement to mathematical formulation of a specific type of optimization problem 2. Understand, identify and solve optimization problems using relevant technique

Unit	Title	Contents	No. of Periods
1	Linear Programming Modeling and their solutions	Introduction to Linear Programming Problem (LPP), Modeling of LPP, Graphical method, simplex method, Artificial Starting Solution Methods, Special cases: degeneracy, alternative optima, unbounded and infeasible solution, and Graphical sensitivity analysis	6
2	Duality and Post Optimal Analysis	LP-Duality, Primal-Dual Relationships, Economic Interpretation of duality, Dual Simplex and Generalized Simplex algorithms, and Post Optimal Analysis	6
3	Advanced Linear Programming	Simplex method fundamentals, Revised Simplex Method, Bounded-Variable Algorithm, Duality, Parametric programming	7
4	Integer Programming	Formulation and Applications, Cutting Plane Algorithm, and Branch and Bound Method.	6
5	Classical Optimization Techniques	Unconstrained problems: Necessary and sufficient conditions, and The Newton-Raphson Method; Constrained problems: equality constraints - Jacobi method and Lagrangean method; Inequality constraints - KKT conditions	7
6	Nonlinear Programming	Unconstrained algorithms: Direct search, Gradient methods; Constrained algorithms: separable, quadratic, chance constrained programs and Linear combination method	7

Total: 39 Periods

Key Text(s):

Hamdy A.Taha, Operations Research - An Introduction, 10th Edition, Pearson Education, 2017

Chapters: 2.1, 2.2, 3.1-3.5 and 3.6.1, 4, 7, 9, 20, and 21

References:

- 1. L.R.Foulds, Optimization Techniques-An Introduction, 1st Edition, Springer-Verlag New York Inc., 1981
- Edwin K.P.Chong, S.H.Zak, An Introduction to Optimization, 4th Edition, John Wiley & Sons, Inc., 2001
- 3. Boyd, Stephen, and Lieven Vanderberghe, Convex Optimization, Cambridge, UK: Cambridge University Press, 2004
- 4. Hillier, Lieberman, Introduction to Operations Research, Seventh Edition, The McGraw-Hill, 2001

		 – Practicals: Optimization Techniques 1 C To introduce the ability to program for different optimization 	ion
	 solve various Excel-solver write algorith method and visualize the 	Develop the skill set to s problems based optimization techniques using Python and hms for optimization methods such as Newton-Raphson, of their variants curves and surfaces in python environment abrary <i>scipy.optimize</i>	
Unit	Title	Contents	No. of Periods
1	Review of Python Objects	Python list, dictionary and loops, functions; Basic plotting of curves and contour plots and 3-D plots	4
2	Solutions of LPP	Solving LP problems using Excel solver; Sensitivity Analysis using Excel solver; Solving LP problems using <i>scipy.optimize.linprog</i>	8
3	Optimization Algorithms	Implementation of Newton-Raphson method; Implementation of Gradient Ascent and Gradient Descent methods	4
4	Python Library <i>scipy.optimize</i>	Univariate function minimization; Constrained and Unconstrained minimization of multivariate scalar function; Global Optimization; Least-Square Optimization; Custom minimizers	10

Key Text(s):

1. SciPy Reference Guide, Retrieved July 7, 2022 from https://docs.scipy.org/doc/scipy-1.7.1/scipy-ref-1.7.1.pdf

Section 2.4 (Optimization - *scipy.optimize*)

- 2. Chistian Hill, Learning Scientific Programming with Python, Second Edition, Cambridge University Press, 2020
- 3. Hamdy A. Taha, Operations Research- An Introduction, 10th Edition, Pearson Education 2017

	Course Objective: To study and understand the basics of computer organization and architecture (CPU, memory, I/O).		
	 Evaluate Evaluate Suggest 	me : Develop the skill to the merits and pitfalls in computer performance measurements impact of ISA on cost/performance of computer design. enhancement in the performance by exploiting Instruction Level Paral and memory hierarchy and its impact on computers performance	llelism
Unit	Title	Contents	No. of Periods
1	Introduction	Performance, the Power Wall, the Switch from Uniprocessors to Multiprocessors, Historical Perspective.	6
2	Instruction Set Design	Operations of the Computer Hardware, Operands of the Computer Hardware, Signed and Unsigned Numbers, Representing Instructions in the Computer, Logical Operations, Instructions for Making Decisions, Supporting Procedures in Computer Hardware, MIPS Addressing for 32-Bit Immediates and Addresses, Parallelism and Instructions.	12
3	Arithmetic for Computers	Addition and Subtraction, Multiplication, Division, Floating Point representation, Computer Arithmetic.	8
4	The Processor	Logic Design Conventions, Building a Datapath, Pipelining, Pipelined Datapath and Control, Data Hazards: Forwarding vs. Stalling, Control Hazards, Exceptions	12
5	Memory Hierarchy	The Basics of Cache, Measuring and Improving Cache Performance, Virtual Memory, A Common Framework for Memory Hierarchies, Parallelism and Memory Hierarchies: Cache Coherence	14
	1	Total: 5	2 Period
		Patterson, and John L. Hennessy, Computer Organization and De ace, Fourth Edition, Elsewhere Publications, 2011	sign: Th

REFERENCE BOOKS:

- 1. Randal E. Bryant and David R. O'Hallaron, Computer Systems: A Programmer's Perspective, Second Edition, Prentice Hall, 2011
- 2. John P. Hayes, Computer Architecture And Organization, McGraw Hill, 1998

[MDSC-105] – Design and Analysis of Algorithms

Course objectives: To train the student to be able to

- Develop problem solving skills by analyzing various problems and to learn the techniques for implementation.
- Analyze the asymptotic performance of algorithms
- Write rigorous correctness proofs for algorithms.

Course outcome: develop the skill to

- 1. Analyze and identify the algorithm of a specific type such as Greedy, Divide and Conquer etc
- 2. Implement computer program for an algorithm based on different problem solving methods
- 3. Discriminate between different problem solving approaches
- 4. Analyze worst-case running times of algorithms based on asymptotic analysis and justify the correctness of algorithms

Unit	Title	Unit Contents	No. of Periods
1	Introduction	Algorithm, Algorithm Specification, and Performance Analysis. Randomized Algorithms. Basic Data Structure: Stacks and Queues, Trees, Dictionaries, Priority Queues, Sets and disjoint Set Union, Graphs.	8
2	Divide and Conquer	Binary search, Finding MIN and MAX, Merge sort, Quick sort, Selection, Strassen's Matrix Multiplication, convex Hull.	6
3	The Greedy method	Knapsack problem, Tree vertex splitting, Job Sequencing with deadlines, minimum cost spanning Trees, optimal merge patterns, single source shortest path.	8
4	Dynamic Programming	General Method, Multistage Graph, All pairs shortest path, single source shortest path, Optimal Binary Search Trees, 0/1 Knapsack, reliability design, the traveling salesperson problem.	8
5	Basic traversal and Search Techniques	Techniques for Binary Trees, graphs, spanning trees, DFS	6
6	Backtracking	General Method, 8-queens problem, sum of subsets, Graph coloring, Hamiltonian cycles, Knapsack problems. Branch and Bound: the general method, 0/1 Knapsack problem, TSP	8
7	NP-Hard and NP-Complete Problems	Basic concepts, Cooks theorem, NP-Hard graph problems, NP-Hard Scheduling problem, NP-Hard code generation problems, some simplified NP-Hard problems	8
		Total: 5	2 Period

E Horowitz, S Sahani S Rajasekaran, Fundamentals of Computer Algorithms, Second Edition, Universities Press, 2008

Chapters: 1,2,3,4,5,6,7 and 11.

Reference Texts:

- 1. Alfred V. Aho and John E. Hopcraft, and Jeffrey D. Ullman, The Design Analysis of Computer Algorithms, Pearson, 1974
- 2. Thomas H. Cormen, Charles E. Leiserson, R.L. Rivest, Introduction to Algorithms, Prentice Hall of India Publications, New-Delhi, 2008
- 3. Sara Baase and Allen Van Gelder, Computer Algorithms: Introduction to Design and Analysis, Third Edition, Pearson education (Singapore) Pvt. Ltd, New Delhi, 2000
- 4. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education (Singapore) Pvt. Ltd New Delhi. 2012

Unit Title Unit Contents

Course Outcome : Develop the skill set to

3. develop insight of the data

distinguish qualitative and quantitative data
 make inferences out of the different plots

[MDSC-106] – Software Lab for Data Visualization*

• To make the student learn different visualization techniques for projecting the data

0			Periods
1	Numbers that Summarize the data	Measures of Average, Measures of Variance, Measures of correlation and Measures of Ratio.	14
2	Fundamental Variations of Graphs	A Brief History of Graphs; Graphical means for Qualitative data; Visual attributes: Lines, Histograms, Bar plot, Scatter plot and Box-Plots and inferences through examples	12
3	General Design Principles for Communication	Organizing, Highlighting, Integration, Table Design, General Graph Design, Multi-Variable display;	14
4	Case Studies	 Given a case study, following aspects can covered: make data storytelling with visualization business aspects of the problem and inferences 	16
		Total	56
		plementation: Instructor can use any visualization framework otlib/Seaborn/Plotly, ggplot2, Tableau, PowerBI, or any other	

Key Text:

Course Objective:

- Stephen Few, Show me the numbers: Designing tables and graphs to enlighten, Second Edition, Analytic Press, 2012 Chapters - 1 to 11
- 2. Cole Nussbaumer Knaflic, Storytelling with Data, John Wiley & Sons, Inc. 2015
- 3. Matplotlib Documentation, Retrieved June 30, 2022 from https://matplotlib.org/3.5.1/plot_types/index.html
- 4. Seaborn Documentation, Retrieved June 30, 2022 from https://seaborn.pydata.org/introduction.html

2 Credits

No. of

SEMESTER-II

	the relationslTo develop the first second second	dents the standard Regression methods in statistics for dete hips between variables he skill to use statistical relationships to forecast future obs gression models that are used to predict and forecast future	-
	1. develop a applications	Develop the skill set to deeper understanding of the linear regression model d apply corrections to problems with the generalized line data	
Unit	Title	Contents	No. of Periods
1	Simple Linear Regression	Model, Least Squares Estimation, Hypothesis Testing, Interval Estimation, Prediction of new observations, Coefficient of Determination, Regression through Origin, Estimation by Maximum Likelihood, Application examples;	8
2	Multiple Linear Models	Models, Estimation of model parameters, Hypothesis Testing, Confidence Intervals, Prediction of new observations, Hidden Extrapolation, Standardized Regression Coefficients, MultiCollinearity, Application examples.	8
3	Model Adequacy Checking	Residual Analysis, Press Statistic, Detection and treatment of Outliers, Lack of fit	7
4	Model Adequacy Correction	Variance stabilizing transformations, Transformations to Linearize, Analytical methods for selecting a transformation, Generalized and Weighted Least squares	8
5	Generalized Linear Models	Logistic Regression, Poisson Regression, Generalized Linear Model	8
		Total :	39 Period

Douglas C. Montgomery, Elizabeth A. Peck and G. Geoffrey Vining, Introduction to Linear Regression Analysis, 5th Edition, Wiley, 2012 Chapters: 1 - 5, 13

References:

- 1. Norman Draper and Harry Smith, Applied Regression Analysis, Third Edition, John Wiley & Sons, Inc., 1998
- 2. STAT 501: Regression Methods, Retrieved Jul 5, 2022 from https://online.stat.psu.edu/stat501/

	[MDSC-201 (P)]	– Practicals: Regression Methods 1 Credit		
	Course Objective : 7 in R programming	To introduce different statical techniques from Regression	Methods	
	1. Perfo	Develop the skill set to rm basic data analysis using R lop linear models and evaluate for given real world dataset	s using R	
Unit	Title	Contents	No. of Periods	
1	tydiverse	Review the data structure in R, Loading and indexing the Data, Data analysis in R using tydiverse package	10	
2	Linear Models for Regression	Simple Linear Regression, Multiple Linear Regression, Check multicollinearity of the data, Residual Analysis	8	
3	Linear Models for Classification	Logistic Regression and Poisson Regression; Evaluation of Models; Confusion matrix and ROC Curves	8	
	Total: 26 Periods			

Total: 26 Periods

Key Text(s):

- 1. Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, An Introduction to Statistical Learning with Applications in R, Springer Science, New York, 2013 https://www.statlearning.com/ Retrieved on August 08, 2022.
- 2. Hadley Wickham & Garrett Grolemund, R for Data Science: Import, Tidy, Transform, Visualize, and Model Data, O'Reilly Media, Inc., 2017

	[MDSC-202] – Multivariate Statistical Analysis 3 Credits				
	j j	To learn multivariate statistical methods that uncover surpresen variables and explain and predict their measured values	-		
	 Select approp Detect outlie 	Develop the skill set to priate methods of multivariate data analysis rrs and cleaning multivariate data; eral statistical tests on multivariate data;			
Unit	Title	Contents	No. of Periods		
1	Matrix Algebra and Optimization	Matrix and vector algebra, positive-definite matrices, spectral decomposition theorem; random vectors and matrices, mean vectors and covariance matrices; matrix inequalities and maximization	5		
2	Sample Geometry and Random Sampling	Random samples, Sample mean vector, Sample Covariance and correlation matrices; Generalized variance and total variance; Sample values of Linear combination of variables	4		
3	The Multivariate Normal Distribution	Multivariate normal density and its properties; maximum likelihood estimators of the parameters and their sampling distributions, Wishart Distribution; Assessing the Assumption of Normality; Detecting Outliers and Cleaning Data;	8		
4	Testing Hypothesis	Tests of hypothesis about the mean vector of normal distribution, Hotelling's T ² - statistics and Likelihood Ratio Tests; Confidence Regions and Simultaneous Confidence Statements; Large Sample Inferences about a Population Mean Vector, Comparing Mean Vectors from Two Populations, Simultaneous Confidence Intervals for Treatment Effects, Testing for Equality of Covariance Matrices;	8		
5	Advanced Multivariate Statistical Techniques	Principal Component Analysis: Population and Sample Principal Components, Summarizing Sample Variance by Principal Components; Graphing the Principal Components;	14		
		Canonical Correlation Analysis: Canonical Variates and Canonical Correlations, Interpreting the Population Canonical Variables; and			

the Sample Canonical Variates and Sample Canonical Correlations	
Discriminant Analysis: Bayes rule and Classification problem, Classification for Two Multivariate Normal Populations, Evaluating Classification Functions	

Total: 39 Periods

Key Text(s):

1. Richard Johnson and Dean Wichern, Applied Multivariate Statistical Analysis, 6th Edition, Pearson Publications, 2007

Chapters: 2, 3, 4, 5.1-5.5, 6.1-6.3, 6.5-6.6, 8.1-8.4, 10.1-10.4, 10.6, 11.1-11.4

References:

- 1. Anderson T. W., An Introduction to Multivariate Statistical Analysis, Wiley, 2003.
- 2. Kshirsagar, A. M., Multivariate Analysis, Marcel Dekker, 1972.
- 3. STAT-505: Applied Multivariate Statistical Analysis, Retrieved Jul 5, 2022 from https://online.stat.psu.edu/stat505/

[M]	DSC-202(P)] – Pr	acticals: Multivariate Statistical Analysis 1 (Credit
	Course Objective : Statistical Analysis	To introduce different statical techniques from Multivariate in R programming	2
	1. Write 2. Deve	Develop the skill set to e R program to carry out multivariate data analysis; elop different models like PCA, Discriminant Analy elation Analysis using R	ysis, and
Unit	Title	Contents	No. of Periods
1	Matrix Algebra through R	vectors, matrices and their operations, Computing eigenvalues and eigenvectors for given matrix, Positive definite matrices and computing square-root of a positive definite matrix	4
2	ggplot2	 Loading and reading multivariate datasets in R Visualize plots: Dot plots, Box-plots, Histograms, and scatter plots Perform Exploratory Data Analysis for multivariate Data QQ and Chi-Square plots 	10

3 Modeling - Perform MANOVA 12 - Perform Principal Component Analysis - Perform Canonical Correlation Analysis - Perform LDA and QDA for Classification of two populations 12			- Transforming the data	
	3	Modeling	 Perform Principal Component Analysis Perform Canonical Correlation Analysis Perform LDA and QDA for Classification of 	12

Total: 26 periods

Key Text(s):

- Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, An Introduction to Statistical Learning with Applications in R, Springer Science, New York, 2013 Retrieved on August 08, 2022 from <u>https://www.statlearning.com/</u>
- 2. Hadley Wickham & Garrett Grolemund, R for Data Science: Import, Tidy, Transform, Visualize, and Model Data, O'Reilly Media, Inc., 2017

	[MDSC-	203] – Machine Learning 3 Credits			
	Course Objective:				
	• To become fair methods.	students to the basic concepts and techniques of Machine Learni miliar with regression methods, classification methods, clusterin miliar with Dimensionality reduction Techniques	•		
	 Gain knowled Identify mach Solve the prol 	Develop the skill set to lge about basic concepts of Machine Learning ine learning techniques suitable for a given problem blems using various machine learning techniques sionality reduction techniques.			
Unit	Title	Contents	No. of Periods		
1	Introduction	Machine Learning: Introduction, Types of machine learning, supervised learning-Basics, Reinforcement Learning	2		
2	Regression Models	Linear Regression, Multivariate Regression, Subset Selection, Shrinkage Methods, Principal Component Regression, Partial Least squares Linear Classification, Logistic Regression, Linear Discriminant Analysis	8		

3	Support Vector Machine	Perceptron, Support Vector Machines, Neural Networks - Introduction, Early Models, Perceptron Learning, Backpropagation, Initialization, Training & Validation, Parameter Estimation - MLE, MAP, Bayesian Estimation	8
5	Decision Trees	Decision Trees, Regression Trees, Stopping Criterion & Pruning loss functions, Categorical Attributes, Multiway Splits, Missing Values, Decision Trees - Instability Evaluation Measures Bootstrapping & Cross Validation, Class Evaluation Measures, ROC curve, MDL, Ensemble Methods - Bagging, Committee Machines and Stacking, Boosting	8
6	Ensemble Techniques	Gradient Boosting, Random Forests, Multi-class Classification, Naive Bayes, Bayesian Networks Undirected Graphical Models, HMM, Variable Elimination, Belief Propagation	8
7	Clustering	Partitional Clustering, Hierarchical Clustering, Birch Algorithm, CURE Algorithm, Density-based Clustering, Gaussian Mixture Models, Expectation Maximization	5

Total: 39 Periods

Key Text(s):

- Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman, The Elements of Statistical Learning, Second Edition, Springer, 2009 Retrieved on July 05, 2022 from https://https://https://https://https://https://https://https://https://https://https://https://https://https://https://https://https://https://https://https//htt
- 2. Chrisopher M Bishop, Pattern Recognition and Machine Learning, Springer, 2006
- Rogers and Girolami, A First Course in Machine Learning, Chapman and Hall/CRC, 2015

References:

- 1. Barber, Bayesian Reasoning and Machine Learning, Cambridge University Press, 2012
- 2. Hal Daumé III, A Course in Machine Learning, e-Edition, 2012
- 3. Mitchell, Machine Learning, McGraw Hill, 1997
- 4. CS229-Machine Learning, Stanford University, Retrieved June 30, 2022 from https://see.stanford.edu/Course/CS229

	[MDSC-20	3(P)] – Practicals: Machine Learning 1 Cre	edit		
	Course Objective	: To implement basic ML algorithms in python			
	1. Mastering in	: Develop the skill set to n python library scikit-learn by implementing several ML algorith ication using machine learning techniques	ms		
Unit	Title	Contents	No. of Periods		
1	Introduction	 Review numpy, pandas and matplotlib Implementation of Linear algorithms, Non-Linear Algorithms and ensembling algorithms, bias-variance tradeoff, from scratch in python 	10		
2	Python Library scikit-learn	Develop different ML algorithms using scikit-learn	16		
		Total: 2	6 Period		
Key T	ext(s):				
1. 2.	Jason Brownlee, Master Machine Learning Algorithms, Discover How They Work and Implement them from Scratch, Machine Learning Mastery, eBook, 2017 Retrieved Jun 30, 2022 from <u>GitHub Jason Brownlee Master Machine Learning</u> <u>Algorithms</u> Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, O'reilly, 2019 Scikit-learn Documentation, retrieved June 30, 2022 from <u>scikit-learn Tutorials</u> —				

3. Scikit-learn Documentation, retrieved June 30, 2022 from <u>scikit-learn Tutorials</u> <u>scikit-learn 1.0.2 documentation</u>

		204] – Big Data Analytics 4 Credits	
	• To teach the fundar scalability and stream	to have skills that will help them to solve complex real-we	-
	 intelligent business Interpret business r for big data analytic Achieve adequate p 	issues in big data management and its associated applicat and scientific computing. nodels and scientific computing paradigms, and apply sof	tware tool
S. No	UNIT	Topics	No. of Periods
1	Introduction to Big Data	Big Data - Why and Where?, Characteristics of Big Data and Dimensions of Scalability, Getting value out of Big Data, Foundations for Big Data Systems and Programming	4
2	Similarity Algorithms	Near-Neighbor search, Shingling, Similarity preserving summary, Locality sensitive functions, Distance measures, Locality sensitive hashing and its applications to different distance measures, Applications of Locality sensitive hashing	10
3	Streaming Data	Stream Data model, Sampling data in a stream, Filtering streams, Counting distinct elements in a stream, Application of stream algorithms in counting.	10
4	Link Analysis	Page Rank, Computation of Page Rank, Topic sensitive page rank, Link spam.	6
5	Frequent Item sets	Market-Basket model, A-priori algorithm, Larger datasets in main memory, Limited pass algorithms, Counting frequent sets in a stream	10
6	Social Network Graphs	Clustering, Discovering of communities, Partitioning,	12

Total: 52 Periods

Key Text(s):

Anand Rajaraman, Mining Massive Datasets, Stanford University Press, 2014

Chapters: 2.1 - 2.3, 3.1 - 3.7, 4.1 - 4.6, 5.1 - 5.4, 6.1 - 6.4, 10

	[MDSC-205]	- Software Lab in Data Engineering 4 Cr	edits		
	Course Objective: Build, monitor and manage real time data pipelines to create data engineering infrastructure using open source projects				
		Course Outcome : Develop the skill set to perform extract, transform and load data pipelines that forms the foundation of data engineering			
Unit Title Contents					
1	Python for Apache Spark	Overview of Variables & Data Types, Conditionals & Loops, Functions & Packages, Collections & Classes	16		
2	Spark Architecture	Introduction, Databricks platform	8		
3	Spark SQL	Introduction, Joins & Temporary views, Higher Order functions, Use cases	24		
4	Spark ML	Introduction, Components, Basics of MLFlow, Basics of AutoML, Basics of Feature Store, Use case	32		
5	Spark Streaming	Introduction, Batch & Streaming engines, Big Data Ecosystem, Use case	24		
	Total: 104 Perio				

Key Text(s):

1. Jules S. Damji, Brooke Wenig, Tathagata Das, Denny Lee, Learning Spark - Lightning Fast Data Analysis, Second Edition, O'Reilly, 2015

2. Nick Pentreath, Machine Learning with Spark, PACKT Publishing, 2015

SEMESTER-III

	Course Objective: Stochastic models are among the most widely used tools in research and management science. Stochastic processes and applications can be used and solve a diverse range of problems arising in production and inventory control planning, service systems, computer networks and many others.				
	2. demo Gauss 3. formu	Pevelop the skill set to date the power of stochastic processes and their range of applicat nstrate essential stochastic modeling tools including Markov of sian processes; alate and solve problems which involve setting up stochastic model ve different techniques from stochastic processes using R	chains and		
Unit	Title	Contents	No. of Periods		
1	Introduction to Markov Chains	Stochastic Processes, Markov Chains, Transition Probabilities, Limiting and Stationary distributions, Irreducible Markov chain, Periodicity, Ergodicity and Time Reversibility of Markov chains, Regeneration and strong Markov property, Probability Generating Functions, Extinction of Branching processes and Markov Chain and Monte Carlo: Hasting Algorithm, Gibbs Sampler	7		
2	Poisson Process	Arrival, Interarrival times, Infinitesimal probabilities, Thinned, and Spatial Poisson processes.	8		
3	Continuous Markov chains	Infinitesimal Generator, Long-Term Behavior, Time-Reversibility, Birth and Death Process, Queuing Theory, Subordinated Poisson process;	12		
4	Brownian Motion	Brownian Motion, Random Walk, and Gaussian process; Transformations and properties, Variations and applications; Martingales;	12		
	Total: 39 Periods				

Chapters: 1, 2.1-2.5, 3.1-3.8, 4, 5.1-5.3, 6, 7, 8

Retrieved July 5, 2022 from https://people.carleton.edu/~rdobrow/stochbook/

References:

- 1. Paul G. Hoel, Sidney C. Port and Charles J. Stone, Stochastic Process, Houghton Mifflin Company, BOSTON, 1972.
- 2. Olga Korosteleva, Stochastic Process with R, An Introduction, First Edition, CRC Press, 2022
- 3. J Medhi, Stochastic Process, Third Edition, New Academic Science Limited, 2012
- 4. Ross, S., Stochastic Processes, second edition, John Wiley, 1996.

5. Goswami, A. and Rao, B. V., A Course in Applied Stochastic Processes, Hindustan Book Agency, 2006.

	[MDSC-301(P)] - Practicals: Stochastic Processes 1 Credit				
	Course Objective: To implement different techniques from Stochastic Processes in R				
	Gaussiar	evelop the skill set to rate essential stochastic modeling tools including Markov chai a processes in R; e and solve problems which involve setting up stochastic mode			
Unit	Title	Contents	Periods		
1	Implementation in R	 Simulation of a Markov chain Simulation of Gambler's Ruin Compute the Higher Transition Probabilities Computing Limiting and Stationary distributions Computing an Expected Return Time The following simulation can be done: Eat, Play, Sleep Brownian Motion Random Walk Gaussian process 	26		
		Total	26 Periods		
Key Text(s): Robert P.Dobrow, Introduction to Stochastic Process with R, John Wiley & Sons, Inc., 2016 Chapters: 1, 2.1-2.5, 3.1-3.8, 4, 5.1-5.3, 6, 7, 8 Retrieved July 5, 2022 from <u>https://people.carleton.edu/~rdobrow/stochbook/</u>					
	References:				
Olga K	orosteleva, Stochastic P	Process with R, An Introduction, First Edition, CRC Press, 202	.2		

	To impart a strong ur	minent deep learning architectures used in the industry. Inderstanding of the training mechanisms. In Advanced topics like Attention based models, Deep Generative	models
	1. Develop deep lea	Through this course, students will be able to: arning solutions to standard AI related problems iderstanding of the internal workings of deep learning architecture	es
Unit	Title	Contents	No. of Periods
1	An Introduction to Neural Networks	McCulloch Pitts Neuron, Perceptrons, Perceptron Learning Algorithm and Convergence, Multilayer Perceptron (MLPs), Representation Power of MLPs, Sigmoid Neurons, Gradient Descent, FeedForward Neural Networks, Backpropagation.	8
2	Gradient Descent Strategies	Gradient Descent (GD), Momentum Based GD, Nesterov Accelerated GD, Stochastic GD, AdaGrad, RMSProp and Adams	5
3	Embedding and Representation Learning	Review of Principal Component Analysis, Autoencoders and relation to PCA, Regularization in autoencoders, Denoising autoencoders, Sparse autoencoders, Contractive autoencoders	5
4	Regularization for Deep Neural Networks	Bias variance Tradeoff, L^2 - regularization, Early stopping, Dataset augmentation, Parameters sharing and tying, Injecting noise at input, Ensemble methods, Dropout, Greedy Layer Wise Pre-training, Better activation functions, Better weight initialization methods, Batch Normalization	5
5	Convolutional Neural Networks	The basic structure of convolutional Network: Padding, Strides, ReLU Layer, Pooling, and Fully Connected Layers; Case studies of Convolutional Architectures: AlexNet, ZFNet, VGGNet, GoogLeNet, ResNet; Visualizing Convolutional Neural Networks, Guided Backpropagation.	5
6	Recurrent Neural Networks	Recurrent Neural Networks, Backpropagation through time (BPTT), Vanishing and Exploding Gradients, Truncated BPTT, GRU, LSTMs	5
7	Advanced topics in Deep Learning	Encoder Decoder Models, Attention Mechanism, Attention over images, Variational autoencoders, Generative Adversarial Networks (GANs)	6

- 1. Ian Goodfellow, YoshuaBengio, Aaron Courville, Deep Learning, The MIT Press, 2016
- 2. Nikhil Buduma, Nicholas Locascio, Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms, O'ReillyMedia, 2017
- 3. Charu C. Agarwal, Neural Networks and Deep Learning: A Textbook, Springer, 2018

References:

- 1. Duda, R.O., Hart, P.E., and Stork, D.G, Pattern Classification, Wiley-Interscience, Second Edition, 2001
- 2. Theodoridis, S. and Koutroumbas, K., Pattern Recognition. Fourth Edition, Academic Press, 2008
- 3. Russell, S. and Norvig, N. Artificial Intelligence: A Modern Approach, Prentice Hall Series in Artificial Intelligence. 2003
- 4. Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press. 1995.
- 5. Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning. Springer. 2001.
- 6. Koller, D. and Friedman, N. Probabilistic Graphical Models. MIT Press. 2009.

	[MDSC-3	[MDSC-302(P)] – Practicals: Deep Learning 1 Credit			
	Course Objective:To build Deep Learning models using PyTorch				
	1. implement se	Develop the skill set to everal deep learning algorithm from scratch lutions in Python			
Unit	Title	Contents	Periods		
1	PyTorch Basics	Why PyTorch?, Basics of Tensors: Tensors, indexing, size, offset, slicing, dtypes, moving tensors to GPU	12		
		Representation of real-world data using tensors: image data, tabular data, and text data			
		Download datasets, Dataset class, Dataset Transformation, Normalizing the data, Create your own dataset using <i>dataloader</i>			
2	Working with pretrained models	Pretrained models: AlexNet, ResNet, Artistic Style, CycleGAN etc	4		

3	The mechanics of Learning	Gathering some data, Visualizing the data, Iterating to fit the model, Normalizing inputs, pytorch autograd, pytorch.nn module	6
4	Case studies	 Classification of images in CIFAR10 dataset Classification model to detect suspected tumors Sentiment Analysis 	4

Total: 26 Periods

Key Text(s):

- 1. Eli Stevens, Luca Antiga, and Thomas Viehmann, Deep Learning with PyTorch, Manning Publications Co., 2020
- 2. PyTorch documentation, Retrieved July 05, 2022 from https://pytorch.org/docs/stable/index.html
- 3. PyTorch For Deep Learning, freecodecamp.org, retrieved July 05, 2022 from https://www.youtube.com/watch?v=GIsg-ZUy0MY

	[MDSC-303] – Natural Language Processing 3 Credits				
	Course Objective: To impart knowledge in classification of documents, retrieving and extracting information from documents, identifying important documents available as unstructured text.				
	Course Outcome	Develop the skill set in NLP to use them in practical situation	ons.		
Unit	Title	Contents	No. of Periods		
1	Introduction to NLP	Regular Expressions, Words, Corpora, Text Normalization, Edit Distance	4		
2	N-gram Language Models	N-grams, Evaluating Language Models, Sampling sentences, Generalization, Smoothing, Entropy & Perplexity	4		
3	Text Classification	Naive Bayes classifier, Optimizing for sentiment analysis, Naive Bayes Language Model, Naive Bayes for other text classification tasks, Evaluation,	7		

		Cross-validation, Logistic Regression, Multinomial Logistic Regression, Cross-entropy loss, Gradient Descent, Regularization	
4	Vector Semantics	Lexical Semantics, Vector Semantics, Words & Vectors, Cosine Distance, TF-IDF, Pointwise Mutual Information, Word2Vec, Visualizing embeddings, Semantic properties of embeddings, Evaluation vector models	6
5	Sequence Labeling	Part-of-Speech Tagging, Named Entity Tagging, HMM PoS tagging, Conditional Random Fields, Evaluation	4
6	Sequence Processing using Deep Learning	Feedforward Networks for NLP, Neural Language Models, RNN Language Models, Stacked and Bidirectional RNNs, LSTM, Transformers, Contextual generation and Summarization	7
7	Machine Translation and Encoder-Decoder Models	Language Divergence, Encoder-Decoder Model, Encoder-Decoder with RNN, Attention, Beam Search, Encode-Decoder with Transformers, Bidirectional Transformer Encoders, Transfer Learning, Evaluation	7

Total: 39 Periods

Key Text(s):

Dan Jurafsky and James Martin, An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition, Speech and Language Processing, Third Edition, Prentice Hall, 2022.

References:

1. Jacob Eisenstein, Introduction to Natural Language Processing, MIT Press, 2019

2. Steven Bird, Ewan Klein and Edward Loper, Natural Language Processing with Python - Analyzing Text with the Natural Language Toolkit, O'reilly First edition, 2011

[MDSC-303(P)] –Practicals: Natural Language Processing* 1 Credit

Course Objective: Implement NLP techniques using a programming language like python

Course Outcome Develop the skill set to implement NLP solutions for real life problems.

Unit	Title	Contents	Periods		
1	Document similarity	Implement document similarity using different measures	3		
2	Bigram and Trigram models	Implement vector models with Bigrams and Trigrams	4		
3	Naive-Bayes & Logistic Regression	Implement Naive-Bayes and Logistic regression for document classification	3		
4	PoS Tagging	Implement Parts-of-Speech tagging	4		
5	Encoder-Decoder model	Implement Encoder-Decoder model with RNN	6		
6	Basic Machine Translation	Implement machine translation of phrases in one language to other	6		
	Total: 26 Perio				

*All implementation using PyTorch/TensorFlow

Key Text(s): Steven Bird, Ewan Klein and Edward Loper, Natural Language Processing with Python - Analyzing Text with the Natural Language Toolkit, O'reilly, First edition, 2011

	[MDSC-304] – Cloud Computing 3 Credits						
Course Objective: To make students understand the core concepts of virtualization, cloud storage: key-value/NoSQL stores, cloud networking, fault-tolerance cloud using PAXOS, peer-to-peer systems, classical distributed algorithms such as leader election, time, ordering in distributed systems, distributed mutual exclusion, distributed algorithms for failures and recovery approaches, emerging areas of big data and many more.							
 Course Outcome : Upon completing this course, 1. students will have intimate knowledge about the internals of cloud computing and how the distributed systems concepts work inside clouds. 2. working knowledge on the current industry systems such as Apache Spark, Google's Chubby, Apache Zookeeper, HBase, MapReduce, Apache Cassandra, Google's B4, Microsoft's Swan 							
Unit No.	Unit Title	Unit Contents	No. of Periods				
1	Introduction; Principles of Parallel and Distributed Computing	Cloud computing at a glance; Historical Developments; building Cloud computing environment; computing platforms and Technologies Principles of Parallel and Distributed Computing: Eras of Computing; parallel Vs. distributed computing; elements of distributed computing; technologies of Distributed computing	7				
2	Virtualization and Cloud Computing Architecture	Characteristics of virtualized environments; virtualization techniques; virtualization and cloud computing; pros and cons of virtualization; examples. Cloud Reference model; Types of clouds; cloud economics; open challenges	5				
3	Aneka: Cloud application Platform	Overview; anatomy of the Aneka container; building Aneka clouds; cloud programming and management	5				
4	Concurrent Computing and High-Throughput Computing and Map Reduce Programming	Introducing parallelism; programming with threads; multithreading with Aneka; applications; Task Computing; task based Application Model; Task based Programming; Data Intensive Computing; Technologies; Aneka Map Reduce Programming	8				

5	Cloud Platforms in Industry and Cloud Applications	Amazon Web services; Google App Engine; Microsoft Azure; Cloud scientific Applications; Business and Consumer Applications	6
6	Advanced Topics in Cloud Computing and Cloud Security	Energy Efficiency Clouds; Market based management clouds; Federated Clouds; Third Party Cloud Services; Infrastructure Security: Network level security, Host level security, and Application level security; Data security and Storage	8

Total: 39 Periods

Key Text(s):

Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi, Mastering Cloud Computing, MGH- 2013

Chapters: 1,2,3,4,5,6,7,8,9,10,11

REFERENCE BOOKS

- 1. Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, *Cloud Computing:Principles and Paradigms, Wiley*, 2011
- 2. Barrie Sosinsky, Cloud Computing Bible, Wiley-India, 2010
- 3. Nikos Antonopoulos, Lee Gillam, *Cloud Computing: Principles, Systems and Applications, Springer*, 2012
- 4. Ronald L. Krutz, Russell Dean Vines, *Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Wiley-India,* 2010

[MDSC-304(P)]–Practicals: Cloud Computing 1 Credit	
Course Objective: To make students understand the core concepts of virtualization, cloud storage: key-value/NoSQL stores, cloud networking, fault-tolerance cloud using PAXOS, peer-to-peer systems, classical distributed algorithms such as leader election, time, ordering in distributed systems, distributed mutual exclusion, distributed algorithms for failures and recovery approaches, emerging areas of big data and many more.	

	 Course Outcome Develop the skill set to students will have intimate knowledge about the internals of cloud computing and how the distributed systems concepts work inside clouds. working knowledge on the current industry systems such as Apache Spark, Google's Chubby, Apache Zookeeper, HBase, MapReduce, Apache Cassandra, Google's B4, Microsoft's Swan 				
Unit	Title	Contents	No. of Periods		
1	Implementations	Implementation of algorithms /exercises from different units in the syllabus in the Lab.	26		
	Total: 26 Periods				
Rajiv I	Key Text(s): Rajiv Misra, Cloud Computing and Distributed Systems-IIT Patna Retrieved July 05, 2022 from <u>https://nptel.ac.in/courses/106104182</u>				

List of Electives:

- 1. MDSC-AI: Artificial Intelligence [4 Credits]
- 2. MDSC-CGT: Combinatorics and Graph Theory [4 credits]
- MDSC-RL: Reinforcement Learning [3 Credits]
 MDSC-RL(P): Practicals-Reinforcement Learning [1 Credit]
- MDSC-MLO: Machine Learning Operations [3 Credits]
 MDSC-MLO(P): Practicals: Machine Learning Operations [1 credit]
- 5. MDSC IR: Information Retrieval [4 credits]
- 6. MDSC NS: Network Security [4 credits]
- MDSC IoT: Internet of Things [3 credits] and
 MDSC IoT (P): Practicals: Internet of Things Lab [1credit]
- 8. MDSC ATS: Applied Time Series Analysis [4 credits]
- 9. MDSC TDA: Topological Data Analysis [4 credits]
- 10. MDSC LSP: Linux System Programming [4 credits]
- 11. MDSC-DS: Distributed Systems [4 credits]

		d an autonomous agent de variety of search methods that agents can employ for problem	n solving.
	2. Solve a real- decision	Students will be able to problem from autonomous agent's point of view world problem using various search methods to arrive at a h ce rules based on logic that can make decisions.	uman like
Unit	Title	Contents	No. of Periods
1	Introduction	Introduction: History, Can Machines think?, Turing Test, Winograd Schema Challenge, Language and Thought, Wheels & Gears, Philosophy, Mind, Reasoning, Computation, Dartmouth Conference, The Chess Saga, Epiphenomena.	10
2	Searching Concepts	State Space Search: Depth First Search, Breadth First Search, Depth First Iterative Deepening Heuristic Search: Best First Search, Hill Climbing, Solution Space, TSP, Escaping Local Optima, Stochastic Local Search	10
3	Search Algorithms	Population Based Methods: Genetic Algorithms, SAT, TSP, emergent Systems, Ant Colony Optimization, Finding Optimal Paths: Branch & Bound, A*, Admissibility of A*, Informed Heuristic Functions, Space Saving Versions of A*: Weighted A*, IDA*, RBFS, Monotone Condition, Sequence Alignment, DCFS, SMGS, Beam Stack Search	12
4	Game theory and advanced search Algorithms	Game Playing: Game Theory, Board Games and Game Trees, Algorithm Minimax, Alpha Beta and SSS*, Automated Planning: Domain Independent Planning, Blocks World, Forward & Backward Search, Goal Stack Planning, Plan Space Planning, Problem Decomposition: Means Ends Analysis, Algorithm Graph plan, Algorithm AO*.	10
5	Logical Inference	Rule Based Expert Systems: Production Systems, Inference Engine, Match-Resolve-Execute, Rete Net Deduction as Search: Logic, Soundness, Completeness, First Order Logic, Forward Chaining, Backward Chaining, Constraint Processing: CSPs, Consistency Based Diagnosis, Algorithm Backtracking, Arc Consistency, Algorithm Forward Checking	10

Key Text(s):

Deepak Khemani. A First Course in Artificial Intelligence, McGraw Hill Education (India), 2013

References:

- 1. Stefan Edelkamp and Stefan Schroedl, Heuristic Search: Theory and Applications, Academic Press, 2011
- 2. John Haugeland, Artificial Intelligence: The Very Idea, A Bradford Book, The MIT Press, 1985.
- 3. Pamela McCorduck, Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence, Second Edition, A K Peters/CRC Press; Second Edition, 2004.
- 4. Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuristics, Second Edition, Springer; 2004
- 5. Judea Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley, 1984.
- 6. Elaine Rich and Kevin Knight, Artificial Intelligence, Tata McGraw Hill, 1991.
- 7. Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd Edition, Prentice Hall, 2009.
- 8. Eugene Charniak, Drew McDermott, Introduction to Artificial Intelligence, Addison-Wesley, 1985.
- 9. Patrick Henry Winston, Artificial Intelligence, Addison-Wesley, 1992.

	[MDSC-CGT] - Combinatorics and Graph Theory 4 Credits			
	 Course Objectives: To get introduced to the elementary principles of Combinatorics To understand the fundamental concepts of graph theory. 			
		Develop the skill set to evaluate some real time problery and combinatorics.	ems using	
Unit	Title	Contents	No. of Periods	
1	Elements of Graph Theory	Graphs, Special Types of Graphs, Graphs and Matrices, Graph Models and Distance, Coloring of Graphs: Chromatic Number and Chromatic Polynomial	6	
2	Elements of Trees	Trees, Properties of Trees, Spanning and Counting of Trees, Trails, Circuits, Paths, Cycles and Planarity: Regular Polyhedra and Kuratowski's Theorem	12	
3	Advanced Topics in Graph Theory	Matchings: Hall's Theorem and SDRs, The Konig-Egervary Theorem and Perfect Matching Ramsey Theory: Classical and Exact Ramsey Numbers	10	
4	Basics in Combinatorics	Binomial, Multinomial Coefficients, The Pigeonhole Principle, The principle of Inclusion and Exclusion, Generating Functions, Partitions, Special Numbers: Stirling, Bell and Eulerian Numbers	10	
5	Advanced Topics in Combinatorics	Polya's Theory of Counting: Permutation Groups, Burnside Lemma, The Cycle Index, Polya's Enumeration Formula; The Gale-Shapley Algorithm; Sylvester Problem and Convex Polygons	14	
	Total: 52 Periods			

Key Text(s):

John M. Harris, Jeffry L.Hirst, and M.J. Mossinghoff, Combinatorics and Graph Theory, Second Edition, Springer 2008

References:

- 1. Sebastian M.Cioaba, M. Ram Murthy, A First Course in Graph Theory and Combinatorics, Hindustan Book Agency-2009
- 2. Narsing Deo, Graph theory with Applications to Engineering and Computer Science, Prentice Hall-1974

		tives: oduce basic mathematical functions in Reinforcement Learning cuss various deep learning architectures to approximate Q-value functions		
Course Outcomes: Develop skill set to 1. solve real-world problems using reinforcement learning techniques like M Bellman Equation 2. Approximate Q-value functions using Deep Neural Networks			MDP and	
Unit	Title	Contents	No. of Periods	
1	Introduction to Reinforcement Learning	Reward functions and Determining a good reward function, State and Action; The Markov Decision Process (MDP), Bellman Equation: Estimating the value function and Q-function; Application of Dynamic Programming to solve Bellman Equation, Value iteration and Policy Iteration methods.	10	
2	Temporal Difference Learning and Q-Learning	Challenges with Classical DP, Model-Based and Model-Free Approaches, Temporal Difference Learning, SARSA, Q-Learning, Explore vs Exploit.	6	
3	Deep Q-Networks	Review of Deep Learning: Feed-Forward Neural Networks, Activation Functions, Loss Functions, and Optimizers in Deep Learning, Convolutional Neural Networks; The DQN Algorithm: Experience Replay, Target Q-Network, Clipping Rewards and Penalties; Double DQN, Dueling DQN;	8	
4	Policy-Based Reinforcement Learning	Policy-Based approaches, Difference between value-based and policy-based approaches, The REINFORCE Algorithm, Methods to Reduce Variance in REINFORCE Algorithm.	8	
5	Actor-Critic Models	Actor-Critic method and DQN, Advantage Actor-Critic architecture, Asynchronous Advantage Actor-critic (A3C) architecture and Synchronous Advantage Actor-critic (A2C) architecture	7	
		Total: 3	89 Periods	

- Nature Singapore Pvt Ltd. 20192. Richard S. Sutton and Andrew G. Barto, Reinforcement Learning, The MIT Press, 2018

References:

1. Phil Winder, Reinforcement Learning, O'Reilly Media, Inc., 2021

	Course Objectives: python	To implement different Reinforcement Learning algo-	rithms in
	and Bellman	orld problems using reinforcement learning techniques like	MDP
Unit	Title	Contents	No. of Periods
1	Python Implementations	 Grid-World Problem Value iteration to solve Grid-World Problem Policy Iterations to solve Grid-World Problem Define Q-Learning agents Testing the agent implementation Define DQN and Double DQN Agents A3C architecture Latest real-world applications from Reinforcement Learning 	26
		Total: 2	26 Periods
Key Te 1. 2.	Mohit Sewak, Deep Nature Singapore Pvt I	Reinforcement Learning: Frontiers of Artificial Intelligence Ltd. 2019 Andrew G. Barto, Reinforcement Learning, The MIT Press, 201	

References:

1. Phil Winder, Reinforcement Learning, O'Reilly Media, Inc., 2021

	Course Objective: Maintenance of the Machine learning models in the production envi has become one the challenges for modern organizations using technology as well as bu This course is designed to have a basic understanding of the ML model life cycle in the production environment.			
Course Outcomes: Develop the skill set to 1. Understand the MLOps as a discipline in the industry 2. Learn the ML- life cycle 3. Example based learning on ML models				
Unit	Title	Contents	No. of Periods	
1	MLOps: What and Why	Why Now and Challenges, People of MLOps, Key MLOps Features.	10	
2	MLOps: How	Developing Models, Preparing for Production, Deploying to Production, Monitoring and Feedback Loop, Model Governance.	15	
3	MLOps: Examples	Consumer Credit Risk Management, Marketing Recommendation Engines, Consumption Forecast	14	
			Total : 39 Periods	
Key T	ext(s):			

Retrieved Jun 30, 2022 from https://itlligenze.com/uploads/5/137039/files/oreilly-ml-ops.pdf

[MDSC-MLO(P)] – Practicals: Machine Learning Operations 1 Credits				
	Course Objective: To earn the development of some containers			
	Course Outcomes: Develop the skill set to implement Web Applications for ML Models Containerization 			
Unit	Title	Contents	No. of Periods	
1	Review of ML Models	Basic Scripts-PYTHON-Model Zoo	6	
2	Web Application	Converting the ML into a Web App using Flask	6	
3	Containerization	Docker and Docker swarm	6	
4	Scaling & Orchestration	Docker and Travis CI, AWS, and Google Kubernetes	8	
Total: 26 Periods				
Key Text: Sandeep Giri, MLOps - Complete Hands-On Guide with Case Study, Article, August 23, 2021.				

Retrieved July 5, 2022 from

https://cloudxlab.com/blog/mlops-machine-learning-operations-a-complete-hands-on-guide-withcase-study/

	[MDSC-IR] - INFORMATION RETRIEVAL 4 Credits			
	 Course Objective: The main objective of this course is to present the basic concepts in information retrieval and more advanced techniques of multimodal based information systems. Word statistics, Vector space model (relevance feedback, query expansion, document normalization, document re-ranking), evaluation of retrieval, generalized VSM, latent semantic indexing, Web retrieval, data fusion, meta search, multimodal retrieval, applications. 			
	 Course Outcome: Student will be able to 1. Understand the underlined problems related to IR and 2. Acquired the necessary experience to design, and implement real applications using Information Retrieval systems. 			
Unit No.	Title	Contents	No. of Periods	
1	INTRODUCTION	Boolean retrieval, The term vocabulary and postings lists, Dictionaries and tolerant retrieval	10	
2	Indexing	Index construction, Index compression	12	
3	Scoring	Scoring, term weighting & the vector space model, Computing scores in a complete search system	10	
4	Evaluation and Query Expansion	Evaluation in information retrieval, Relevance feedback & query expansion	10	
5	Classification	Text classification & Naive Bayes, Vector space classification	10	
	Total: 52 Periods			
Key Text: Manning, Raghavan and Schutze, Introduction to Information Retrieval, 2009, Freely Downloadable <u>http://nlp.stanford.edu/IR-book/information-retrieval-book.html</u>				

Chapters: 1 to 9, 13, 14

	[MDSC-NS]	- NETWORK SECURITY 4 Credits			
	standards and various s and email.	issues and working principles of various authentication protocols, PKI secure communication standards including Kerberos, IPsec, and SSL/TLS y to use existing cryptographic utilities to build programs for secure			
	 Course Outcome: Apply the knowledge of cryptographic checksums and evaluate the performance of message digest algorithms for verifying the integrity of varying message sizes. Apply different digital signature algorithms to achieve authentication and desig applications Understand network security basics, analyze different attacks on networks and eva performance of firewalls and security protocols like SSL, IPSec, and PGP. Analyze and apply system security concepts to recognize malicious code. 				
Unit No.	Unit Title	Unit Contents	No. of Periods		
1	Introduction	Computer Security Concepts, The OSI Security Architecture, Security Attacks, Security Services, Security Mechanisms, A Model for Network Security	4		
2	Symmetric Encryption	Symmetric Encryption Principles, Symmetric Block Encryption Algorithms, Random and Pseudorandom Numbers, Stream Ciphers and RC4, Cipher Block Modes of Operation	10		
3	Message Authentication and Hash Functions	Approaches to Message Authentication, Secure Hash Functions, Message Authentication Codes	4		
4	Public Key Cryptography	Public-Key Cryptography Principles, Public-Key Cryptography Algorithms, Digital Signatures	6		
5	Key Distribution and User Authentication	Kerberos, X.509 Certificates, Public-Key Infrastructure	6		
6	Cloud Security	Cloud Security Risks and Countermeasures, Data Protection in the Cloud, Cloud Security as a Service	4		
7	Transport-Level Security	Web Security Considerations, Secure Sockets Layer (SSL), Transport Layer Security (TLS), HTTPS, Secure Shell (SSH)	6		
8	Electronic Mail Security	Pretty Good Privacy (PGP), S/MIME	6		
9	IP Security	IP Security Overview, IP Security Policy, Encapsulating Security Payload, Combining Security Associations	6		

Key Text: William Stallings, Cryptography and Network Security : Principles and Practice, Fifth Edition, Pearson Education Inc, 2018

Chapters: 1.1-1.6, 2.1-2.5, 3.1-3.6, 5.1-5.6, 6.1-6.5, 9.1-9.4, 10.1-10.4, 11.1-11.6, 12.1-12.6, 13.1-13.4, 14.1-14.5, 15.1-15.3, 16.1-16.5, 18.1-18.3, 19.1-19.5

REFERENCE BOOKS:

- 1. Richard R. Brooks, Introduction to Computer and Network Security: Navigating Shades of Gray, 1st Edition, 2013.
- 2. Charlie Kaufman, Radia Perlman and Mike Speciner, Network Security: Private Communication in a public world, Second Edition, Prentice Hall PTR, 2002, ISBN 0-13-046019

[MDSC-IOT] - Internet of Things 3 Credits

Course Objective:

Students will be explored to the interconnection and integration of the physical world and cyberspace. They are also able to design & develop IOT Devices.

Course Outcome: Students will be able to

- **1.** Understand the application areas of IOT
- 2. Realize the revolution of Internet in Mobile Devices, Cloud & Sensor Networks
- **3.** Understand building blocks of Internet of Things and characteristics.

Unit No.	Unit Title	Unit Contents	No. of Periods
1	Introduction	What is the Internet of Things? : History of IoT, About IoT, Overview and Motivations, Examples of Applications, Internet of Things Definitions and Frameworks : IoT Definitions, IoT Architecture, General Observations, ITU -T Views, Working Definition, IoT Frameworks, Basic Nodal Capabilities	4
2	FUNDAMENTAL IoT MECHANISMS AND KEY TECHNOLOGIES	Identification of IoT Objects and Services, Structural Aspects of the IoT, Environment Characteristics, Traffic Characteristics, Scalability, Interoperability, Security and Privacy, Open Architecture, Key IoT Technologies, Device Intelligence, Communication Capabilities, Mobility Support, Device Power, Sensor Technology, RFID Technology, Satellite Technology,	4
3	RADIO FREQUENCY IDENTIFICATION TECHNOLOGY	RFID: Introduction, Principle of RFID, Components of an RFID system, Issues EPCGlobal Architecture Framework: EPCIS & ONS, Design issues, Technological challenges, Security challenges, IP for IoT, Web of Things. Wireless Sensor Networks:	6

		History and context, WSN Architecture, the node, Connecting nodes, Networking Nodes, Securing Communication WSN specific IoT applications, challenges: Security, QoS, Configuration, Various integration approaches, Data link layer protocols, routing protocols and infrastructure establishment.	
4	RESOURCE MANAGEMENT IN THE INTERNET OF THINGS		
5	INTERNET OF THINGS PRIVACY, SECURITY AND GOVERNANCE	Vulnerabilities of IoT, Security requirements, Threat analysis, Use cases and misuse cases, IoT security tomography and layered attacker model, Identity establishment, Access control, Message integrity, Non-repudiation and availability, Security model for IoT.	6
6	BUSINESS MODELS FOR THE INTERNET OF THINGS	Business Models and Business Model Innovation, Value Creation in the Internet of Things, Business Model Scenarios for the Internet of Things. Internet of Things Application : Smart Metering Advanced Metering Infrastructure, e-Health Body Area Networks, City Automation, Automotive Applications, Home Automation, Smart Cards,	9
		Total	: 39 Periods
2.	Daniel Minoli, Building the Communications, First Edit Dieter Uckelmann, Mark Ha Springer-Verlag Berlin Heid E-copy available: <u>Architect</u>	e Internet of Things with IPv6 and MIPv6: The Evolving World of tion, Willy Publications, 2013. arrison and Florian Michahelles, Architecting the Internet of Thing delberg 2011 ing the Internet of Things (archive.org) and N. Railkar, "Identity Management for Internet of Things", Rive	gs,
1. 2. 3.	Olivier Hersent, David Bos Protocols, Second Edition, Daniel Kellmereit, Daniel C Inc; First Edition, 2014	ernet of Things Connecting Objects to the Web, Willy Publication warthick, Omar Elloumi, The Internet of Things: Key Application WillyPublications, 2015 Obodovski, The Silent Intelligence: The Internet of Things, Lightn was, Wireless Sensor Network: An information processing approac	s and ing Source

		Students will be explored to the interconnection and integration of the the students are also able to design & develop IOT Devices.	he physica
	Course Outcome: St	udents will be able to implement the concepts learned	
Unit No.	Unit Title	Unit Contents	No. of Periods
1	Internet of things	Overview, technology of the internet of things, enchanted objects, Design principles for connected devices, Privacy, Web thinking for connected devices; Writing Code: building a program and deploying to a device, writing to Actuators, Blinking Led, Reading from Sensors, Light Switch, Voltage Reader, Device as HTTP Client,HTTP,PushVersusPull; Pachube, Netduino, Sending HTTP Requests—the Simple Way, Sending HTTP, Requests—the Efficient Way	13
2	НТТР	Device as HTTP Server, Relaying Messages to and from the Netduino, Request Handlers, WebHtml, HandlingSensorRequests, Handling Actuator Requests; Going Parallel: Multithreading, Parallel Blinker, prototyping online components, using an API, from prototypes to reality, business models, ethics, privacy, disrupting control, crowdsourcing	13

- Communications, First Edition, Willy Publications, 2013..
- 2. Dieter Uckelmann, Mark Harrison and Florian Michahelles, Architecting the Internet of Things, Springer-Verlag Berlin Heidelberg 2011 E-copy available: Architecting the Internet of Things (archive.org)

Reference Books

- 1. Hakima Chaouchi, The Internet of Things Connecting Objects to the Web, Willy Publications, 2010
- 2. Olivier Hersent, David Boswarthick, Omar Elloumi, The Internet of Things: Key Applications and Protocols, Second Edition, WillyPublications, 2015

[MDSC-ATS]- Applied Time Series Analysis 4 Credits

Course Objective: To learn, understand patterns and apply statistical methods for the analysis of data that have been observed over time.

Course Outcome : Develop skill set to

- 1. understand how Time Series data differs from other data types and what components are likely in a given set of Time Series data.
- 2. communicate effectively on the results of Time Series models and forecasts in a concise manner.
- 3. make informed decisions on future prospects using Time Series models and forecasts.

Unit	Торіс	Details	No. of Periods	
1	Introduction to time Series Data			
2	Seasonal Models	Autoregressive Moving Average Models, Difference Equations, Autocorrelation and Partial Autocorrelation, Forecasting, Estimation, Integrated Models for Nonstationary Data, Building ARIMA Models, and Multiplicative Seasonal ARIMA Models	12	
3	Spectral Analysis	Cyclical Behavior and Periodicity, The Spectral Density, Periodogram and Discrete Fourier Transform, Nonparametric Spectral Estimation, Parametric Spectral Estimation, Multiple Series and Cross-Spectra, Linear Filters, Dynamic Fourier Analysis and Wavelets, Lagged Regression Models, Signal Extraction and Optimum Filtering, Spectral Analysis of Multidimensional Series	16	
4	Advanced Topics	Long Memory ARMA, Fractional Differencing, Unit Root Testing, GARCH Models, Threshold Models, Regression with Autocorrelated Errors, Transfer Function Modeling, and Multivariate ARMAX Models	12	
		Total: 5	2 periods	

Key Text(s):

1. Robert H. Shumway, David S. Stoffer, Time Series and It's Applications: With R Examples, Third Edition, Springer, 2011

Chapters: 1-5

References:

- 1. Jonathan D.Cryer, Kung-Sik Chan, Time Series Analysis: With Applications in R, Second Edition, Springer Texts in Statistics, Springer, 2008
- 2. Peter J. Brockwell, Richard A. Davis, Introduction to Time Series and Forecasting, Third Edition, Springer Texts in Statistics, Springer, 2016

[MDSC - TDA] – Topological Data Analysis 4 Credits

Course Objective: To understand complex datasets, where complexity arises from not only the massiveness of the data, but also from the richness of the features. The objective of this subject is to enable the students to become familiar with the new methods in Topological Data Analysis (TDA), from theory, algorithm and application perspectives.

Course Outcome: Student will be able to

- 1. infer high dimensional structure from low dimensional representations and convert data sets into topological objects.
- 2. pursue new research directions in the field of TDA and integrate advanced TDA techniques with other areas of data science such as data mining, machine learning, computer graphics, and data visualization.

Unit	Title	Contents	No. of Periods
1	Introduction	Graphs, connected components, topological space, manifold, point clouds.	12
2	Homology	Simplicial Complexes, Convex Set Systems, Delaunay Complexes and Alpha Complexes, Homology Groups, Relative Homology	12
3	Persistent homology	Persistent Homology, Efficient Implementations, Extended Persistence.	12
4	Persistence topology of data	Barcodes, Example of Natural image, Persistence Landscapes: Norms, Convergence, Confidence Intervals, and Stability of Persistence Landscapes, Statistical Inference using Landscapes	16

Total: 52 Periods

Key Text(s):

1. Edelsbrunner, Herbert, Computational topology : An Introduction, AMS, 2010. Chapters: I, III, IV, VII.

- 2. Robert Ghrist. Barcodes: The persistent topology of data. Bulletin of the American Mathematical Society (AMS), 45(1): 61–75, 2008.
- 3. Peter Bubenik, Statistical Topological Data Analysis using Persistence Landscapes, J. of Machine Learning Research 16 (2015), 77-102.

Reference(s):

- 1. Frédéric Chazal and Bertrand Michel, An introduction to Topological Data Analysis: fundamental and practical aspects for data scientists, 2017.
- 2. G. Carlsson, Topology and Data, Bulletin of the American Mathematical Society Volume 46(2), 2009.

[MDSC-LSP] – Linux System Programming 4 Credits

Course Objective:

- To learn the different set of system calls for the Linux Operating System
- To understand how the Linux OS manages files, processes and memory
- To implement inter-process communication using different mechanisms

Course Outcome: Student will be able to

- 1. Assimilate the internal abstractions of any Operating System
- 2. Utilize the insights gained from how these abstractions were implemented and apply them in other areas of work

Unit	Title	Topics				
1	Introduction	System Calls, Library Functions, Standard C Library, Error handling	8			
2	File Management	Overview, File Operations (open, read, write, lseek, close), Atomicity, File Descriptors - relation to open files and duplication, File I/O variations (pread, pwrite, readv, writev), File truncation				
3	3 Process Process concept, Process Memory Layout, V Management Memory Management, Stack Frames, Command arguments, Environment Variables, Process - Cre Termination, Execution and Monitoring					
4	4 Memory Management Heap and Stack Memory allocation, Memory Mapping - Creation, Unmapping, File mapping, Synchronization, Anonymous Mapping		12			
5	Inter-Process Communication	Signals, Pipes, FIFO, POSIX Semaphores - Named Semaphore and Semaphore Operations, POSIX Shared Memory - Creation, Usage & Removal	12			

Key Text:

Michael Kerrisk, The Linux Programming Interface, First Edition, No Starch Press, 2010

Chapters: 3 (3.1 - 3.4), 4 (4.1 - 4.7), 5 (5.1 - 5.8), 6 (6.1 - 6.7), 7, 20, 24, 25, 26, 27, 44 (44.1 - 44.4, 44.6 - 44.8), 49 (49.1 - 49.5, 49.7), 53 (53.1 - 53.3), 54 (54.1 - 54.4)

Reference Texts:

Robert Love, Linux System Programming, Second Edition, O'Reilly, 2014

	[MDSC-DS] – Distributed Systems 4 Credits				
Cours • •	 Course Objectives: To provide students with contemporary knowledge in parallel and distributed systems To equip students with skills to analyze and design parallel and distributed applications To provide master skills to measure the performance of parallel and distributed algorithms 				
Cours	e Outcomes: Students will be able to				
1.	 Apply the principles and concepts in analyzing and designing the parallel and distributed system 				
2.	Reason about ways to parallel problems				
3.					
4.	Understand the middleware technologies that support distributed applications RPC, RMI and object based middleware	such as			
5.	Improve the performance and reliability of distributed and parallel programs				
Unit	Description	No. of Periods			
1	Characterization Of Distributed Systems: Introduction, Examples of Distributed Systems, Trends In Distributed Systems, Focus On Resource Sharing, Challenges, Case Study: The World Wide Web. System Models: Physical Models, Architectural Models, Fundamental Models	10			

2	Networking And Internetworking: Types Of Network, Network Principles, Internet Protocols, Case Studies: Ethernet, Wifi And Bluetooth. Interprocess Communication: The API For The Internet Protocols, External Data Representation And Marshaling, Multicast Communication, Network Virtualization: Overlay Networks, Case Study: MPI	10
3	Remote Invocation: Request-Reply Protocols, Remote Procedure Call, Remote Method Invocation, Case Study: Java RMI Indirect Communication: Group communication, Publish-subscribe systems, Message queues, Shared memory approaches Web Services: Web services, Service descriptions and IDL for web services, A directory service for use with web services, XML security, Coordination of web services, applications of web services.	10
4	Coordination And Agreement: Distributed mutual exclusion, Elections Coordination and agreement in group communication, Consensus and related problems Name Services: Name services and the Domain Name System, Directory services, Case study: The Global Name Service, Case study: The X.500 Directory Service. Time And Global States: Clocks, events and process states , Synchronizing physical clocks , Logical time and logical clocks, Global states, Distributed debugging	11
5	Distributed Transactions: Flat and nested distributed transactions, Atomic commit protocols, Concurrency control in distributed transactions, Distributed deadlocks. Replication: System model and the role of group communication, Fault-tolerant services, Case studies of highly available services: The gossip architecture, Bayou and Coda, Transactions with replicated data Mobile And Ubiquitous Computing: Association, Interoperation, Sensing and context awareness, Security and privacy, Adaptation, Case study: Cooltown	11
	Total:	52 Periods
	Key Text(s): George Coulouris, Jean Dollimore, Tim Kindberg, Gordon Blair, Distributed Systems-Concepts and Design, Addison Wesley, 2012 Chapters: I - VI	
	 References: 1. A. Taunenbaum, Distributed Systems: Principles and Paradigms, Pearso 2. G. Coulouris, J Dollimore, and T Kindberg, Distributed Systems: Conception Design, 5th Edition, Pearson Education, 2012 	

APPENDIX

S. N o.	Paper Code	Paper Title	Employabi lity sector	Entrepreneurial and other skills imparted by the course	Relevance of the course to local, national, regional and global developmental needs
1	MDSC-101; MDSC-101(P)	Applied Linear Algebra; Practicals: Advance Linear Algebra	Academia, Industry	Problem solving, critical thinking	National programme on AI, Global AI needs etc. (scientists, software developers)
2	MDSC-102; MDSC-102(P)	Inferential Statistics; Practicals: Inferential Statistics	Academia, Industry	Problem solving, critical thinking	National programme on AI, Global AI needs etc. (scientists, software developers)
3	MDSC-103; MDSC-103(P)	Optimization Techniques; Practicals: Optimization Techniques	Academia, Industry	Problem solving, critical thinking	National programme on AI, Global AI needs etc. (scientists, software developers)
4	MDSC-104	Computer Organization and Architecture	Industry	Analysis	At all levels
5	MDSC-105	Design and Analysis of Algorithms	Academia, Industry	analysis, design, cognition	National / international (must need capability for computer scientists, software engineers)

6	MDSC-106	Software Lab for Data Visualization	Industry	Problem solving, Data Interpretation Skills	National programme on AI, Global AI needs etc. (scientists, software developers)
7	MDSC-201; MDSC-201(P)	Regression Methods; Practicals: Regression Methods	Academia, Industry	Analysis, Problem Solving	National programme on AI, Global AI needs etc. (scientists, software developers)
8	MDSC-202; MDSC-202(P)	Multivariate Statistical Analysis; Practicals: Multivariate Statistical Analysis	Academia, Industry	Analysis, Problem Solving	National programme on AI, Global AI needs etc. (scientists, software developers)
9	MDSC-203; MDSC-203(P)	Machine Learning; Practicals: Machine Learning	Industry	Modeling, Problem solving, Analysis	National programme on AI, Global AI needs etc. (scientists, software developers)
10	MDSC-204	Big Data Analytics	Industry	Analysis	National / international (scientists)
11	MDSC-205	Software Lab in Data Engineering	Industry	Problem Solving, Analysis	National programme on AI, Global AI needs etc. (scientists, software developers)
12	MDSC-301; MDSC-301(P)	Stochastic Processes; Practicals:Stoc hastic Processes	Academia, Industry	Analysis, Problem Solving	National/Internatio nal (scientists)

13	MDSC-302; MDSC-302(P)	Deep Learning; Practicals: Deep Learning	Industry	Modeling, Problem Solving	National programme on AI, Global AI needs etc. (scientists, software developers)
14	MDSC-303; MDSC-303(P)	Natural Language Processing; Practicals: Natural Language Processing	Industry	Modeling, Problem Solving	National programme on AI, Global AI needs etc. (scientists, software developers)
15	MDSC-304; MDSC-304(P)	Cloud Computing; Practicals: Cloud Computing	Industry	Analysis	National programme on AI, Global AI needs etc. (scientists, software developers)
16	MDSC-305	Seminar	Academia, Industry	Problem Solving, Training towards research orientation, critical thinking, communication, presentation	At all levels
17	MDSC-403	Project/Dissert ation	Academia, Industry	Modeling/design , problem solving, communication, critical thinking, analytical reasoning	At all levels
18	MDSC-404	Comprehensiv e Viva Voce	Academia, Industry	Critical Thinking, communication, memory	At all levels

19	MDSC-AI	Artificial Intelligence	Industry	Problem Solving, Analysis	National programme on AI, Global AI needs etc. (scientists, software developers)
20	MDSC-CG T	Combinatorics and Graph Theory	Academia, Industry	Analysis, Problem Solving	National/Internatio nal (scientists)
21	MDSC-RL; MDSC-RL(P)	MDSC-RL: Reinforcement Learning; Practicals: Reinforcement Learning	Industry	Modeling, Problem Solving, Analysis	National programme on AI, Global AI needs etc. (scientists, software developers)
22	MDSC-ML O; MDSC-ML O(P)	MDSC-MLO: Machine Learning Operations; Practicals: Machine Learning Operations	Industry	Problem Solving, Analysis, Deploying models	National programme on AI, Global AI needs etc. (scientists, software developers)
23	MDSC-ATS	Applied Time Series Analysis	Academia, Industry	Modeling, Problem Solving, Forecasting	National programme on AI, Global AI needs etc. (scientists, software developers)
24	MDSC-IR	Information Retrieval	Academia, Industry	Analysis	National programme on AI, Global AI needs etc. (scientists, software developers)
25	MDSC-NS	Network Security	Academia, Industry	Analysis	National/ International (scientists)

26	MDSC-IoT; MDSC-IoT (P)	Internet of Things; Practicals: Internet of Things Lab	Industry	Problem Solving, Analysis	National programme on AI, Global AI needs etc. (scientists, software developers)
27	MDSC-TDA	Topological Data Analysis	Industry	Problem solving, Analysis	National/ International (scientists)
28	MDSC-LSP	Linux System Programming	Industry	Analysis	National/ International (scientists)
29	MDSC-DS	Distributed Systems	Academia, Industry	Analysis	National/ International (scientists)